Características del vídeo digital
Un ordenador sólo sabe trabajar con ceros y con unos (dígitos) de modo que cualquier cosa que le llegue del exterior, ha de transformarse a ceros y unos para que él se entienda. Una imagen de vídeo en un televisor está compuesta de líneas (625 líneas para un televisor PAL, el formato usado en Europa, 525 para un televisor NTSC, el formato usado en casi toda América y Japón) pero una imagen digital está compuesta de píxeles, o puntos. Una imagen será de más calidad cuantos más puntos tenga. Un ordenador puede trabajar con im ágenes de CUALQUIER tamaño, pero hay unos estándares a los que conviene adaptarse si queremos que nuestro vídeo se reproduzca, no sólo en ordenadores, sino también en televisores a través de DVD's o CD's de vídeo, en cualquiera de sus posibles formatos que veremos más adelante. Para adaptar nuestro vídeo a esos estándares hemos de ajustar los parámetros que veremos a continuación.Tamaños de pantalla
Todos sabemos que cuanta más resolución tenga u na imágen mejor, más definición tiene. Eso se comprueba claramente a la hora de ampliarla: si la resolución es escasa, al ampliarla a pantalla completa se verán esos famosos "cuadrados" que, cuanto más ampliemos más grandes se verán. Es el efecto de "pixelación". Todas las imágenes digitales están compuestas por puntos. Cada punto es la parte más pequeña que un monitor es capaz de representar y ese punto representa un sólo color. Dependiendo de la profundidad de color a la que trabajemos, tendremos 16, 256 (8bits), 65.536(16bits), 16.777.216 (24 bits) o 16.777.216 con canal alpha dedicado a trabajar con transparencias (32 bits). Si aumentamos una imágen de 640x480, por ejemplo, hasta 800x600 el ordenador necesita 160x120 puntos que NO están en la imágen original y que, por tanto, se tiene que inventar. Aunque mediante técnicas de in terpolación el ordenador puede calcular el color más probable para esos píxeles de "relleno" es evidente que cuanto más ampliemos, mayor será el número de píxeles inventados y la imágen se corresponderá menos con la original.Los destinos más comunes para dar salida al vídeo son VHS, VídeoCD, SuperVCD, ChinaVideoDisc DV y DVD. Los tamaños de captura para cada uno de estos destinos son:
-VHS -> 300x360 (Por compatibilidad, el VHS se suele capturar con el mismo tamaño que el VCD)
- VídeoCD (VCD)-> 352x288 PAL, 352x240 NTSC
- SuperVCD (SVCD)-> 480x576 PAL, 480x480 NTSC
- ChinaVideoDisc (CVD) -> 352x576 PAL, 352x480 NTSC
- DV y DVD - > 720x576, 720x480 NTSC
Flujo de datos (bitrate)
Un factor determinante en la calidad final del vídeo es el flujo de datos. Se llama así a la cantidad de información por segundo que se lee del archivo de vídeo para reproducirlo. Al igual que con el tamaño de imágen, a mayor flujo de datos,. mejor calidad de imágen, pero hay que tener en cuenta que el flujo de datos es, en muchas ocasiones, más importante que el tamaño y capturas de gran tamaño pero poco flujo de datos pueden llegar a tener una calidad realmente desastrosa. Un VCD, de 1150 kbits/s y 352x288 se verá mejor que uno de 720x576 y 300 kbits/s, por ejemplo. Aunque el tamaño de pantalla sea mayor, el escaso ancho de banda para los datos hacen que para guardar la información de luminancia y color del vídeo sea necesario agrupar muchos píxeles con la misma información degradando la imágen rápidamente. El efecto resultante, es parecido al que conseguimos aumentando una imágen de baja resolución.
Por cierto, es muy frecuente confundir KByte (KB) con Kbit (Kb). Un byte es un "octeto" de bits, es decir, cada 8 bits tenemos un byte. O sea, que los 1150 Kbit/s son, en realidad poco menos de 143 KBytes/s.
Flujo de Datos Constante (CBR - Constant Bit Rate)
¿Tienes un CD grabable a mano? Míralo. Verás que pone 650MB - 74 Min. Es decir, tiene una capacidad de 650 MB que equivalen a 74 minutos de audio. Hay un flujo constante de 150 KB/s, suficientes para suministrar toda la información necesaria de audio. Si tenemos en cuenta que para poder registrar TODA la información de un vídeo PAL a pantalla completa (720x576) necesitamos un CBR (Fujo de Datos Constante) de 32.768 KB/s entendemos pronto el porqué de la compresión a la hora de trabajar con vídeo. Una hora de vídeo a pantalla completa sin comprimir son 115.200 MB.
El principal inconveniente del CBR se presenta a la hora de capturar con compresión. Uno de los principales métodos de compresión (el MPEG) basa su compresión, además de comprimir la imágen fija, en guardar los cambios entre un fotograma (o fotogramas) y el siguiente (o siguientes). Aunque el flujo de datos sea escaso, no tendremos problemas de calidad en escenas con poco movimiento y pocos cambios de imágen entre fotograma y fotograma. El problema llega con escenas de acción en las que la cámara se mueve con rapidez y un fotograma es muy, o totalmente diferente, del anterior o el siguiente. En ese caso, el ancho de banda necesario para guardar los cambios entre fotograma y fotograma crece considereablemente y queda menos espacio para comprimir la imagen, deteriorándola notablemente, tanto más cuanto menor sea el flujo de datos.
Este es el principal problema del VCD y lo que nos lleva a todos de cabeza. El VCD usa CBR de 1150 Kbit/s para el vídeo y 224 para el audio, aunque yo aconsejo rebajar el audio a 128 Kbit/s y ampliar el vídeo a 1246 Kbit/s puesto que este formato también es compatible en la mayoría de los casos con el formato VCD al no pasar de los 1347 Kbit/s de CBR que se especifican en su estándar. Con un flujo de datos de vídeo tan bajo, cualquier incremento es realmente de agradecer.
Flujo de Datos Variable (VBR - Variable Bit Rate)
El único inconveniente del Flujo de Datos Variable (VBR) es que no podremos predecir cuál será el tamaño final exacto de nuestros archivos (aunque sí podemos conocer el máximo o mínimo), todo depende de la complejidad del vídeo puesto que, como su nombre sugiere, el flujo de datos varía dependiendo de la complejidad de las imágenes a comprimir. Si el vídeo tiene poco movimiento, conseguiremos bastante más compresión que con CBR pero, si por el contrario el vídeo contiene muchas secuencias de acción, el tamaño final del vídeo puede ser sensiblemente mayor que usando CBR, pero a cambio habremos preservado la calidad.
Cuando trabajamos con CBR basta con especificar el flujo de datos que queremos que tenga nustro vídeo, pero cuando trabajamos con VBR tenemos varias opciones:
1. Especificar un valor medio al que el programa con el que trabajemos tratará de ajustarse en la medida de lo posible, proporcionando un flujo mayor para escenas complejas y reduciéndolo en escenas más tranquilas.
NOTA: La mayoría de compresores no nos dejarán usar esta opción a no ser que elijamos comprimir a doble pasada
2. Determinar valores máximo y mínimo. En esta ocasión eliminamos el "criterio" del ordenador para marcar los límites por encima y por debajo
3. Establecer una opción de calidad de la imágen que se deberá de mantener sin importar el flujo de datos. Si queremos calidad, esta será siempre la opción a utilizar, puesto que siempre usará el flujo de datos mínimo necesario para preservar la calidad especificada. De este modo, evitamos el efecto que se produce en vídeos de CBR en los que unas secuencias se ven perfectas y otras muy pixeladas con la imágen bastante degradada. El tamaño final es completamente desconocido, pero preservaremos una calidad constante en todo el vídeo.
FPS (Frames per second) - cuadros por segundo
El vídeo, en realidad, no es un contínuo de imágenes, sino "fotografía en moviento". La retina tiene la propiedad de retener durante unos instantes lo último que ha visto de modo cuando vemos una secuencia de imágenes, pero que cambia rápidamente, las imágenes se superponen en nuestra retina unas sobre otras dando la sensación de continuidad y movimiento. Ahora bien, ¿cuantos cuadros por segundo (frames per second en inglés) son necesarios para crear esa sensación de continuidad? El estándard actual establece lo siguiente:
- Dibujos animados: 15 fps
- Cine: 24 fps
- Televisión PAL: 25 fps, que en realidad son 50 campos entrelazados, o semi-imágenes, por segundo
- Televisión NTSC: 29'97 fpsque en realidad son 60 campos entrelazados, o semi-imágenes, por segundo.
Vídeo entrelazado (campos) / no-entrelazado
El ojo humano es "tonto" y ante una sucesión rápida de imágenes tenemos la percepción de un movimiento contínuo. Una cámara de cine no es otra cosa que una cámara de fotos que "echa fotos muy rápido". En el cine se usan 24 imágenes, o fotogramas, por segundo. Es un formato "progresivo" Eso quiere decir que se pasa de una imágen a otra rápidamente Vemos una imágen COMPLETA y, casi de inmediato, vemos la siguiente. Si tenemos en cuenta que vemos 24 imágenes por segundo, cada imágen se reproduce durante 0,04167 segundos. Las diferencias, por tanto, entre una imágen y otra son mínimas. Para ilustrar este concepto he elegido una sucesión de 4 fotogramas de dibujos animados porque los dibujos son también un formato progresivo y porque en animación se usa una velocidad de reproducción bastante inferior: 15 imágenes (o fotogramas) por segundo. Aún así, como se puede apreciar, las diferencias entre cuadro y cuadro son muy escasas.
El vídeo y la televisión tienen un funcionamiento totalmente distinto al cine. Para empezar hay dos formatos diferentes. PAL, usado en Europa, y NTSC usado en América y Japón como zonas más destacadas. En el formato PAL la velocidad de imágenes por segundo es de 25 y de 29,97 en el formato NTSC. A esta velocidad de imágenes por segundo se le llama Cuadros Por Segundo en español (CPS) ,o Frames Per Second en inglés (FPS )
Otra diferencia es que la pantalla de un televisor no funciona como un proyector de cine, que muestra imágenes "de golpe". Un televisor está dividido en líneas horizontales, 625 en televisores PAL y 525 en televisores NTSC. Estas líneas no muestran todas a la vez un mismo fotograma, sino que la imágen comienza a aparecer en las líneas superiores y sucesivamente se van rellenando el resto hasta llegar a las líneas más inferiores. Un único fotograma no es mostrado "de golpe", sino de modo secuencial. Al igual que pasaba con el cine, este proceso de actualización de líneas es tan rápido que, en principio, a nuestro ojo le pasa desapercibido y lo percibimos todo como un contínuo.
Sin embargo, este proceso presenta, o mejor dicho, presentaba un problema. Las características de los tubos de imágen de los primeros televisores hacian que cuando la imágen actualizada llegaba a las últimas líneas (las inferiores) la imágen de las líneas superiores comenzaba a desvanecerse. Fue entonces cuando surgió la idea de los "campos" y del vídeo entrelazado. El "truco" está en dividir las líneas del televisor en pares e impares. A cada grupo de líneas, par o impar, se le llama "campo". Así tendríamos el campo A o superior (Upper o Top en inglés) formado por las líneas pares (Even en inglés) y el campo B, inferior o secundario (Lower o Bottom en inglés) formado por las líneas impares (Odd en inglés).
Primero se actualiza un grupo de líneas (campo) y, acto seguido se actualiza el otro
En la imágen que presento a continuación las líneas negras formarían el campo A o superior (Upper o Top) y las líneas rojas formarían el campo B o inferior (Lower o Bottom).
Esa división de la imágen en campos tiene consecuencias TRASCENDENTALES para nosotros:
- La primera consecuencia es que estamos dividiendo un único fotograma en dos campos.Ya no vamos a tener 25 o 29,97 cps (cuadros por segundo) sino 50 o 59,94 semi-imágenes o, más correctamente, campos por segundo. De ese modo, un único fotograma (fotografía, o dibujo en este caso), que tiene un tamaño "completo" se dividiría en dos imágenes con la mitad de líneas (la mitad de resolución vertical). Eso, en principio, no representaría problema alguno si no fuera porque cada campo se corresponde a un momento distinto en el tiempo, de modo que cada campo ofrece una imágen distinta (he marcado de rojo las zonas en las que puedes fijarte para notar las diferencias)
CODECSH.264/MPEG-5 AVC
FORMATOS MPEG AVI ETC
No hay comentarios:
Publicar un comentario